ar X iv : m at h / 01 06 13 1 v 1 [ m at h . O A ] 1 5 Ju n 20 01 INJECTIVE ENVELOPES OF C ∗ - ALGEBRAS AS OPERATOR MODULES

نویسنده

  • V. I. PAULSEN
چکیده

In this paper we give some characterizations of M. Hamana’s injective envelope I(A) of a C∗-algebra A in the setting of operator spaces and completely bounded maps. These characterizations lead to simplifications and generalizations of some known results concerning completely bounded projections onto C∗-algebras. We prove that I(A) is rigid for completely bounded A-module maps. This rigidity yields a natural representation of many kinds of multipliers as multiplications by elements of I(A). In particular, we prove that the(n times iterated) local multiplier algebra of A embeds into I(A).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 01 06 08 1 v 1 [ m at h . A G ] 1 1 Ju n 20 01 EFFECTIVE DESCENT MAPS FOR SCHEMES

I show that a quasicompact morphism f : X → Y of schemes is an effective descent map for quasicoherent modules if and only if the map OY → f∗(OX) is injective, and remains injective after any base change. This generalizes Grothendieck’s result that faithfully flat quasicompact morphisms are effective descent maps.

متن کامل

ar X iv : m at h / 05 01 13 9 v 2 [ m at h . FA ] 1 A ug 2 00 5 Stability of Adjointable Mappings in Hilbert C ∗ - Modules ∗

The generalized Hyers–Ulam–Rassias stability of adjointable mappings on Hilbert C∗-modules is investigated. As a corollary, we establish the stability of the equation f(x)∗y = xg(y)∗ in the context of C∗-algebras.

متن کامل

ar X iv : h ep - p h / 01 06 27 4 v 1 2 5 Ju n 20 01 STATUS OF HARD INTERACTIONS ( JETS AND HEAVY FLAVOR

We review the status of hard interactions, in particular of jet and heavy flavor production , at HERA and LEP. Emphasis is given to recent theoretical developments. Instantons, event shapes, and prompt photons are also briefly discussed.

متن کامل

ar X iv : m at h / 06 01 47 2 v 1 [ m at h . Q A ] 1 9 Ja n 20 06 REPRESENTATIONS OF QUANTUM GROUPS DEFINED OVER COMMUTATIVE RINGS II

In this article we study the structure of highest weight modules for quantum groups defined over a commutative ring with particular emphasis on the structure theory for invariant bilinear forms on these modules.

متن کامل

ar X iv : m at h / 01 03 07 5 v 2 [ m at h . R A ] 1 8 Ju n 20 01 RESIDUE COMPLEXES OVER NONCOMMUTATIVE RINGS

Residue complexes were introduced by Grothendieck in algebraic geometry. These are canonical complexes of injective modules that enjoy remarkable functorial properties (traces). In this paper we study residue complexes over noncommutative rings. These objects have a more intricate structure than in the commutative case, since they are complexes of bimodules. We develop methods to prove uniquene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008